Theo \u0111\u00f3 s\u1ed1 0123443210 khi c\u1ed9ng l\u1ea1i ta c\u00f3 c\u00e1c con s\u1ed1: 0+1=1, 1+2=3, 2+3=5, 3+4=7,\u2026. Sau khi c\u1ed9ng l\u1ea1i t\u1ea5t c\u1ea3 \u0111\u01b0\u1ee3c con s\u1ed1: 135787531. Ti\u1ebfp t\u1ee5c c\u1ed9ng l\u1ea1i theo quy lu\u1eadt tr\u00ean, ta s\u1ebd c\u00f3 1+3=4, 3+5=8, 5+7=12 (l\u1ea5y 2),\u2026 v\u00e0 \u0111\u01b0\u1ee3c s\u1ed1 48233284. Sau \u0111\u00f3, v\u1eabn th\u1ef1c hi\u1ec7n c\u1ed9ng cho \u0111\u1ebfn khi ch\u1ec9 c\u00f2n l\u1ea1i 2 ch\u1eef s\u1ed1 cu\u1ed1i c\u00f9ng. C\u1ee5 th\u1ec3 v\u1edbi v\u00ed d\u1ee5 n\u00e0y, ta s\u1ebd c\u00f3: <\/span><\/p>\n2056502<\/span><\/p>\n251152<\/span><\/p>\n76267<\/span><\/p>\n3883<\/span><\/p>\n16<\/span><\/p>\n77<\/span><\/p>\nK\u1ebft qu\u1ea3 cu\u1ed1i c\u00f9ng nh\u1eadn \u0111\u01b0\u1ee3c l\u00e0 con s\u1ed1 77. H\u00e3y nu\u00f4i v\u00e0 \u0111\u00e1nh con l\u00f4 n\u00e0y v\u00ec ch\u1eafc ch\u1eafn con s\u1ed1 n\u00e0y s\u1ebd mang \u0111\u1ebfn chi\u1ebfn th\u1eafng d\u00e0nh cho b\u1ea1n \u0111\u1ea5y!<\/span><\/p>\nB\u00e0i vi\u1ebft tr\u00ean \u0111\u00e2y \u0111\u00e3 cung c\u1ea5p cho b\u1ea1n m\u1ed9t s\u1ed1 th\u00f4ng tin v\u1ec1 <\/span>soi c\u1ea7u xsmb pascal <\/b>c\u0169ng nh\u01b0 m\u1ed9t s\u1ed1 ph\u01b0\u01a1ng ph\u00e1p \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng. Hy v\u1ecdng b\u1ea1n \u0111\u00e3 b\u1ecf t\u00fai cho m\u00ecnh nh\u1eefng ki\u1ebfn th\u1ee9c h\u1eefu \u00edch v\u00e0 c\u00f3 th\u1ec3 l\u00e0m gi\u00e0u nh\u1edd l\u00f4 \u0111\u1ec1 nh\u00e9!<\/span><\/p>\n<\/div>\n<\/article>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n<\/div>\n